
Exploring the Impact of User and System Factors on Human-AI Interactions
in Head-Worn Displays

Feiyu Lu1,2 * Yan Xu1 † Xuhai Xu1,3 ‡ Brennan Jones1 § Laird Malamed1,4 ¶

1Reality Labs Research at Meta, Redmond, WA, USA
2Virginia Tech, Blacksburg, VA, USA

3University of Washington, Seattle, WA, USA
4University of Southern California, Los Angeles, CA, USA

Figure 1: Illustrations of the impacts that user and system factors may pose on human-AI experiences in HWDs. In this scenario, a
user wears a pair of AR glasses walking down the street, and tries to decide which direction to go next. Depending on the different
user factors, the system provides the suggestions differently: (a-b) for user A with average Conscientiousness personality trait and
high Prior Trust with AI, the system initiates the assistance once it detects that the user is in need of help. (c-e) For user B with high
Conscientiousness and low Prior Trust with AI or Trust Propensity, (c) system-initiated assistance may risk lowering user trust and
intent to use the system; (d-e) Instead, the system gives users the option to use the AI (i.e., (d) the user presses the inquiry button,
then (e) the AI suggestion pops up), user’s trust and adoption rate of the AI’s suggestions could be improved.

ABSTRACT

Empowered by the rich sensory capabilities and the advancements
in artificial intelligence (AI), head-worn displays (HWD) could
understand the user’s contexts and provide just-in-time assistance
to users’ tasks to augment their everyday lives. However, there has
been limited understanding of how users perceive interacting with
AI services, and how different factors impact the user experience
in HWD applications. In this research, we investigated broadly
what user and system factors play important roles in human-AI
experiences during an AI-assisted spatial task. We conducted a user
study to simulate an everyday scenario where augmented reality
(AR) glasses could provide suggestions/assistance. We researched
three AI system factors (performance, initiation, transparency) with
multiple user factors (personality traits, trust propensity, and prior
trust with AI). We not only identified the impact of user traits such as
the levels of conscientiousness and prior trust with the AI, but also
found interesting interactions between them and system factors such
as AI’s performance and initiation strategy. Based on the findings,
we suggest that future AI assistance on HWD needs to take users’
individual characteristics into account and customize the system
design accordingly.
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1 INTRODUCTION

One notable difference between spatial head-worn displays (HWD)
and traditional mobile devices such as phones and smartwatches,
lies in its potential for artificial intelligence (AI)-infused intelligent
services to flourish. These devices come with rich on-device sensory
capabilities (e.g., hand/face/eye trackers, world-facing cameras for
spatial mapping and boundary/plane detection), which allow them
to possess a deeper understanding of the user’s physiological sta-
tus, tasks, and environments more than any other mobile devices
on the market. Combined with state-of-the-art AI systems, future
HWDs would be able to sense, access and stream large amounts of
contextual data, which can be fed into the AI models in order to
deliver information spatially to the users at the right time and place,
to assist their tasks anytime and anywhere, right when the user needs
them [21, 37, 56]. Such context-aware and intelligent future has
been credited in recent work of augmented/mixed reality (AR/MR)
HWDs, that researchers believe the merging of spatial computing
and AI would lead to a low-friction, non-intrusive, adaptive, and
relevant information display future to assist the user’s tasks. For
example, based on the contextual data, the AI could decide where to
place information [10, 34], how to present information [14, 35, 36],
and how to offer assistance and explanation to users [21, 56].

Recent work in intelligent interfaces focuses primarily on devel-
oping algorithmic models that optimize the objective costs of the
users’ tasks [10, 26, 34]. For example, Cheng et al. studied methods
to layout virtual content automatically with HWDs by minimizing
a pre-defined cost function [9]. However, prior research in human-



AI (HAI) partnerships have shown that AI systems that maximize
objective performance may not be considered more useful by the
users [42, 51]. As people gain more exposure to AI in all facets of
everyday tasks, researchers should care not only about the utilitarian
values of AI systems, but also about how AI services make users feel,
and how to form trustworthy, partnered, controllable, and favorable
HAI experiences [2]. We argue that this would be especially true
for future HWDs, in which intelligent assistance could be delivered
directly in front of the user’s eyes without spatial or temporal con-
straints. When, where, and how to show the assistance need to be
more carefully considered so users do not feel intimidated, offended,
confused, or annoyed by them [56].

Existing research in HAI has identified the impacts of a set of
individual user/system factors on HAI experiences (see Sect. 2.3).
However, most work only investigated the main effects of system fac-
tors, without taking into account the characteristics of different users,
without investigating the interplay between multiple factors, without
producing implications to spatial wearable computing devices such
as HWDs and AR/MR systems.

In this research, we attempt to fill these gaps, by conducting an
in-depth analysis on the impacts of multiple user and system fac-
tors on the perceived human-AI interaction experiences in spatial
tasks with HWDs. While AI can be broadly defined, we focus on a
specific application of AI in HWDs, where the AI assists the user
by delivering recommendations based on its spatial understanding
and predictions of user status, activity, and needs. This falls into the
categories of spatial, wearable, and context-aware computings. For
user factors, we studied the uses’ personality traits, trust propen-
sity level (tendency to trust other people/digital services), and prior
trust levels with AI. For system factors, we studied the AI’s per-
formance, initiation strategy, and transparency level. Through an
VR-simulation study with eighty participants, our results shed light
on how to deliver intelligent AI services in HWDs for everyday
uses. To our knowledge, our work is one of the first that seeks to
provide empirical evidence on how to deliver favorable human-AI
interaction experiences in spatial wearable displays such as AR/MR
HWDs covering a wide variety of user and system factors.

Our contributions in this paper are three-fold: (1) an in-depth
exploration of the impacts of multiple system- and user-oriented
factors on HAI experiences in HWDs-empowered spatial tasks; (2)
empirical evaluation of how users perceive using AI assistance in
everyday scenarios enabled by HWDs; (3) design considerations
distilled to deploy favorable and trust-worthy human-AI experiences.
Our findings provide valuable implications to spatial wearable com-
puting and head-worn AR/MR applications.

2 RELATED WORK

2.1 AI-assisted Decision Making
Users face uncountable decision-making tasks everyday. With the
proliferation of AI applications and systems, humans and AIs are
working collectively to conduct decision-makings tasks. These sce-
narios are also called human-AI teaming [60]. Such tasks span
across low-stake mundane everyday activities (e.g., music/TV show
recommenders, navigation) to high-stake professional workflows
(e.g., clinical trials [31], court scenes [22]). In most of these activ-
ities, the AI would provide its recommendations or alternatives to
address the user’s needs, and it is up to the users whether or not
to adopt the AI’s suggestions. Either adopting or not adopting, the
AI’s suggestion could be part of or have an impact on the user’s
final decisions. With the recent development of mobile computing
and especially AR/MR HWDs, future devices will be more likely to
understand the user’s contexts better, while at the same time surfac-
ing the AI suggestions more frequently and just-in-time [21, 56]. It
becomes increasingly critical to better understand how would users
perceive different types of AI-empowered intelligent assistance in
HWDs.

2.2 Intelligent User Interfaces in HWDs
One application of AI in HCI is intelligent user interfaces (IUI),
which refer to interfaces that aim to enhance “the efficiency, effec-
tiveness, and naturalness of human-machine interaction by repre-
senting, reasoning, and acting on models of the user, domain, task,
discourse, and media [39].” There has been extensive research in
deploying IUIs in mobile devices for tasks such as text-entry [59],
navigation [46], context exploration [28,57], and everyday recom-
mendations [7]. IUIs serve as a medium for users to interact with
AI-infused systems, and for AIs to understand user intent, make
decisions, and act on behalf of the users.

More recently, enabled by the rich sensory capabilities of spatial
wearable displays such as AR/MR HWDs, research starts to investi-
gate how to deploy IUI to facilitate tasks in these devices. For ex-
ample, Yu et al. explored interfaces that facilitate pointing/selection
tasks in VR by recommending potential targets [58]. Lindlbauer et
al. explored adapting the UI’s level of detail and frame of reference
based on user’s workload and tasks [34]. Davari et al. explored
alternating AR content’s transparency and location to facilitate so-
cial interactions [14]. Lu and Xu explored methods to automatically
transition UIs to different locations [37]. Cheng et al. proposed
optimization methods that adapt the layout of AR windows when
users move from one location to another [10]. Lages et al. explored
user-triggered methods to change the layout and placements of AR
windows in walking scenarios [29].

There are two common gaps in deploying HAI experiences in
HWDs: (1) existing research focuses heavily on maximizing the ob-
jective performance (e.g., [34,58]), with less emphasis on the human
part of the HAI experiences; (2) existing research seems to indicate
an one-size-fits-all solution, without taking into consideration the
different characteristics of the users and how that may impact the
user’s perception of using intelligent services in spatial wearable
computing devices (e.g., [13,14,29,37]). In this research, we attempt
to fill both gaps by exploring the impacts of both user profile and
system design choices on user experience of using intelligent AI
systems in HWDs during a spatial task. We focus on one specific
application of IUI in HWDs, in which AI is used to offer intelligent
assistance during a spatial task by making predictions about user
status and needs.

2.3 Review of User & System Factors in HAI
Previous research, not in the wearable computing or AR/MR domain,
but in the broad HAI domain, has identified some factors that may
play a role in the user’s experience of interacting with AI services.
This serves as inspiration for our explorations. In this section, we
detail the rationale of why we chose to study the specific factors, and
how we believe these factors may play a role in HAI experiences in
HWDs.

2.3.1 User factors

Prior study showed that the user’s personality and trust propensity
were likely to impact user’s experience of interacting with AI.

Personality traits. According to Diener and Lucas, personality
reflects “people’s characteristic patterns of thoughts, feelings, and
behaviours [16].” It reflects the basic dimensions in which people
differ [38]. The Big-Five personality model has been widely used
to determine the user’s personality in five dimensions (O-C-E-A-N):
(O)penness, (C)onscientiousness, (E)xtroversion, (A)greeableness,
and (N)euroticism [40] (please see Table 1 for definitions). Research
has indicated that some of these personality traits could influence the
user’s sense of trust and intention to use an AI system [8,62]. For ex-
ample, Cai et al. found that user’s conscientiousness and neuroticism
traits are likely to influence their trust with music recommenders [8].
However, it remains unclear whether such impacts would also apply
to spatial wearable computing use cases with HWDs.



Table 1: A description of the seven user factors studied in the work.

Big Five Personality Traits [8, 19, 20] (High ratings mean higher traits)
Openness Routine, Conventional (Low) - Creative, Imaginative (High)
Conscientiousness Impulsive, Disorganized (Low) - Prudent, Disciplined (High)
Extroversion Reserved, Thoughtful (Low) - Sociable, Outgoing (High)
Agreeableness Critical, Tough (Low) - Cooperative, Sympathetic (High)
Neuroticism Unflappable, Confident (Low) - Emotionally sensitive, Anxious (High)

Trust Propensity & Prior Trust (High ratings mean higher propensity/trust levels)

Trust Propensity [32] How willing the person is to trust other people/new technologies?
Hesitant, Unlikely to Trust (Low) - Inclined, Likely to Trust (High)

Prior Trust How much does the user trust AI/computer recommendations prior to the study?
Not trust AI at all (Low) - Trust AI a lot (High)

Trust propensity. Trust propensity is defined as the disposi-
tional willingness to trust others [11]. It is a component in disposi-
tional trust that could be influenced by the user’s past experiences,
cultural background, and personality traits [23]. Previous research
has indicated that trust propensity could influence the user’s for-
mation of trust towards technologies [41] and the intention to use
recommendation systems [8]. We hypothesize that this may also
apply well in HWD applications, that the user’s tendency to trust
may impact their experience and willingness of using AI systems
while wearing HWDs.

Prior trust with AI. Other than the propensity to trust, another
important user factor is the prior trust with an AI system. The user’s
prior trust with the AI system determines the users attitude in the
beginning of interactions with the AI, which could influence their
initial trust while interacting with a new AI system. Early research
has indicated the impact of prior trust attitudes on the final trust of
AI assistance in high-stake scenarios [55]. To our knowledge, there
has not been any research studying the potential impact of prior trust
on intelligent services in spatial tasks involving HWDs.

2.3.2 System factors

AI’s objective performance. As mentioned earlier, recent work
in IUIs in HWD/AR/MR focuses on producing algorithmic models
that optimize the objective performance or benefits of a certain
outcome [9, 34, 45, 58]. The AI system’s objective performance
is one of the most intuitive measures that indicates its helpfulness
in a given situation, but existing research also indicated that AI
systems that perform better may not always be considered more
useful/usable [42, 51, 63]. For example, Roy et al. found that users
prioritize being in control more than high AI performance [51]. How
do users perceive AI interfaces with different performance levels
remains an underexplored and popular question in UI design. We
decided to also dig in this direction, but in the use cases of assisting
spatial tasks with HWDs. In this research, we explored two levels of
performance: good performance (≥ 75% confidence) and medium
performance (≥ 50% confidence). We decided to not include bad
performance in our explorations, given that most available intelligent
services on the market can deliver reasonable performance powered
by big data and advancements on machine learning. We wanted to
make our results more relevant and applicable to current situations.

Transparency. Although intelligent services often come with
different performance levels, not all interfaces decide to make such
information available to the users. Recent research in explainable
and responsible AI has highlighted the need to increase the trans-
parency of AI systems to make the AI’s suggestions more intelli-
gible [56]. A transparent system would allow users to understand
why an AI makes a specific decision or exhibits a certain behav-
ior [12, 54]. Confidence display (e.g., whether the confidence level
of an AI’s suggestion is made visible) is one strategy to increase the
transparency of an AI system [6,12]. In this research, we studied the

effect of AI transparency, in particular the visibility of confidence
display, on the user’s perceived HAI experiences in spatial HWDs.

Initiation strategy. Intelligent AI assistance could be user-
initiated or system-initiated. Initiation strategy has been extensively
studied by previous research [1, 4, 24]. While user-initiated strate-
gies may preserve agency to the greatest extent [51], it puts the
interaction effort solely on the users [37]. System-initiated strategy,
on the other hand, reduces the users effort by having high level
of system automation at the cost of potentially reducing the user’s
sense of being in control [37, 51]. Most previous studies explored
the potential impact of initiation strategy on the sense of control and
agency [17, 37]. In this research, we would like to further study this
popular factor, in the context of spatial HWD applications.

2.3.3 Implications to HWDs
Existing work that studied the impacts of user factors in
HWD/AR/MR focus primarily on perceptions of avatar embodiment
and presence [15, 27, 50], but rarely HAI experiences. The most
relevant recent work to ours is [8] and [56]. Cai et al. studied the
interplay between user factors with AI initiation strategy while inter-
acting with a music recommender on a mobile phone [8]. However,
the study did not explore other system factors such as performance
and transparency, and it is unclear whether their findings would
generalize to spatial wearable computing use cases with HWDs.
Xu et al. explored how to present AI explanations in AR HWDs
while considering user activity, goals, intent, and trust levels [56].
However, the paper did not empirically investigate user traits such
as personality and how they interplay with different system designs.

In general, three directions remain underexplored: (1) there has
been lack of explorations on the impact of user factors; (2) existing
work rarely explored the combined effects of multiple factors; (3)
existing work rarely produced any implications to spatial wearable
computing applications. To our knowledge, our work is one of the
first that complemented all the three gaps. Of course, there are
factors that our study could not cover but were explored in prior
research, such as explainability, timing, AI’s representation, and
diversity/serendipity. We call for future research to further study
these factors. Our goal for this paper is to cover the factors that are
more familiar to users, more suitable to spatial HWD experiences,
and more relevant to everyday decision-making scenarios.

3 EXPERIMENT

3.1 Hypothesis
In this research, our goal is to Explore and identify the effects of
the system factors, as well as their interactions with user factors,
on the user’s perceived experience of using intelligent assistance
during a spatial task wearing HWDs. Based on existing work in the
literature [8, 56], we hypothesize that:
H1. User factors would impact the perceived HAI experiences,
especially the user’s conscientiousness and trust propensity levels.



H2. There would exist interactions between user factors and system
factors on the perceived HAI experience in HWD uses. As such, an
AI system design that is favorable/unfavorable to one type of users
may not be for others.

3.2 System
The study used a VR simulation of performing a spatial task and
interacting with AI assistance while wearing a HWD. This approach,
also known as VR simulation, has been proven to be an effective
strategy to gather user feedback in a wide variety of experiment sce-
narios [5, 18, 33]. We improved the visual fidelity of the simulation
by applying scenes with baked lighting and high-resolution textures
(see Fig. 2).

3.3 Scenario & Task
To design the task scenario, we had three main criteria: (1) it needs
to represent a spatial task using HWDs and AI systems; (2) it needs
to retain characteristics of typical human-AI teaming/partnership
situations, in which humans and AI work collectively to achieve a
certain goal; (3) the user should be able to gain experience and learn
from their past interactions to make better decisions (either from
themselves or the AI), similar to common decision-making tasks.

Taking these into consideration, our scenario simulates a scenario
in which HWDs could augment the user’s memory and offer assis-
tance in object searching tasks at home [47]. It is a combination
of spatial-navigation and visual-search task designs that are well-
utilized in AI and AR/MR research [30, 61]. During the task, users
need to find multiple objects (e.g., watch, coat, keys) scattered in a
VR home, which is made of four spaces: living room, office, bed-
room, and bathroom (see Fig. 2). All objects were represented by a
white sphere with a text of its name to limit the effect of different vi-
sual features on the object-searching efficiency. In each experiment
condition, participants had to find and collect eight out of a total
of fourteen randomly-placed objects. We chose number fourteen
because we wanted to make the task slightly more challenging than
human memory capacity, so there would likely always be a need for
AI assistance [43].

A loosely body-fixed instruction panel, which was located above
participants’ front view, displayed the name of the next object to be
collected for each trial. During each condition, the positions of the
objects remained unchanged. Therefore, we expected participants
to gain knowledge about where the uncollected items were located
during the search, just like what they would do in real-life tasks.

3.4 Interacting with the VE & the AI
To find objects, the user needed to make a decision about which room
to check out next. Teleportation was used as the main mechanism
to travel within/between the rooms (see Fig. 3). Users can either
choose which room to teleport to by themselves, or follow an AI’s
suggestion. When AI delivered a suggestion, it was presented on
a panel that was loosely head-fixed and always visible to the users
(see Fig. 4 (c) and (d)). To proceed, the users had to choose either
one of the two available options: (1) Guide me there, in which the
user chose to adopt the AI’s suggestion. They would then sense a
vibration on the left controller, with the corresponding room button
highlighted guiding them to the suggested room; (2) Dismiss, in
which the user could choose to discard the AI’s suggestion and make
their own decisions.

The AI’s suggestion could be right or wrong. The occurrences
of correct/wrong suggestions were determined by a pre-defined
confidence value (see section below). If the AI makes a wrong
suggestion, the user had to locate the target item by choosing and
finding the correct room to teleport to by themselves. Within each
room space, users could also point their hand at the ground to teleport
to different spots within the room (see Fig. 3 (c)). However, to visit
a different room, users had to use the virtual buttons attached to

Table 2: Descriptive statistics of the seven user factors for the 80
participants.

User Factors N Min Max Mean SD
Openness 80 3.5 7 6.12 .88
Conscientiousness 80 3 7 6.06 1.06
Extroversion 80 1 7 5.01 1.49
Agreeableness 80 2 7 5.38 1.21
Neuroticism 80 2.5 7 5.51 1.18
Trust Propensity 80 2.5 7 4.41 1.17
Prior Trust 80 1 7 4.92 .97

the controller. The reason for this was to make error-recovery cost
consistent when the AI makes a mistake (i.e., bringing up the menu
for rooms and clicking a button (see Fig. 3 (a-b))), as well as to
mitigate the learning effect that participants become familiar with
where each room is and could travel faster in later trials.

To collect the virtual objects, participants point the ray at the
sphere and click on the trigger button (see Fig. 3 (d)). Participants
have to find and collect the right object to proceed to the next trial.

3.5 System Factors & Interface Conditions
• AI’s objective performance: The AI has two performance

levels. For good performance, the AI makes the correct sug-
gestion in 6 out of the 8 trials (75% confidence). For medium
performance, the AI makes the correct suggestion in 4 out of
the 8 trials (50% confidence). Note that these percentages are
higher than a blind guess without any prior knowledge, which
is 25%.

• Initiation: In the user-initiated situation, the AI suggestion is
only visible if the user initiates it by pressing on the trigger but-
ton on the controller (see Fig. 4 (a-b)). In the system-initiated
situation, the AI assistance appears automatically shortly after
the beginning of each trial (see Fig. 4 (c)).

• Transparency: In non-transparent cases, the confidence dis-
play is invisible (see Fig. 4 (c)). In transparent cases, the
confidence display of the AI’s suggestion is visible, at the end
of the suggestion sentence (see Fig. 4 (d)).

Taking into account the three system factors, we studied eight vari-
ations of the interface with different combinations of AI’s objective
performances, initiation strategies, and transparency levels.

3.6 Participants
In the screening phase, we recruited 104 participants on dscout. In
the end, 80 of them (34 female, 43 male, 3 non-binary) completed
the study with valid data entries and a balanced order of conditions,
ranging from 15 - 74 years old (Mean = 33, SD = 12.28). All
participants were regular Meta Quest 2 users. They self-reported no
color-deficiency and had access to a 5 by 5 feet space to safely move
around in their physical area for the study. Participants’ distributions
in terms of the user factors are shown in Table 2.

3.7 Study Design
We utilized a mixed design for the study, with AI Performance being
the between-subject factor, while Initiation and Transparency being
the within-subjects factors. As such, each participant interacted with
an AI with the same performance in four conditions. The reason
we chose AI Performance as the between-subject factor instead of
Initiation strategy or Transparency level was to prevent participants’
experiences from being biased by the fluctuating performance of the
AI across sessions.

Since the task involves interacting with a simulated AI in the same
virtual environment for multiple rounds, we attempted to mitigate



Figure 2: The virtual home environment used in the study: (a) a living room; (b) a bedroom; (c) a home office room; and (d) a bathroom. Users
needed to traverse through the rooms and collect items represented by spheres and texts.

Figure 3: (a-b) The user utilizes the virtual buttons located on the left-hand controller to move between multiple indoor spaces (e.g., the user
moves from the living room (a) to the bedroom (b)); the user uses the hand ray to (c) teleport in the same space, or (d) collect virtual objects in the
scene. The user had to collect the right object to proceed to the next trial.

the potential ordering and learning effect using two methods: (1) we
applied Latin Square counterbalancing to the order of testing on both
performance levels groups, with an equal number of participants
experiencing each ordering sequence; (2) in the beginning of each
condition, we randomized the placement of the objects to be found,
so participants always had to search even if they become familiar
with the virtual environment.

The user factors were not experimentally controlled since it was
unfeasible to control participants’ personality and background. In-
stead, to balance the user factors, we conducted stratified sampling
with anti-clustering to maximize the within-group heterogeneity and
between-group similarity [48,49]. As such, each of the two between-
subject groups had users with a wide range of personalities, genders,
ages, trust propensities, and prior trust levels, but the two groups
shared similar distributions for more valid comparisons later.

3.8 Measures

AI Usage/Adoption Rate: In the 32 rounds of decision making (8
rounds×2 Initiation×2 Transparency) per participant, we recorded
AI usage rate - how often they decided to use the AI (only in the
user-initiated conditions); and AI adoption rate - how often they fol-
lowed the path suggested by the AI. In the user-initiated conditions,
participants’ behaviors only counted as adoptions if they used the
AI and then followed the AI after using it.
Trust & Intent to Use: In the post-study survey, we asked each
participant about their perceived level of trust and intent to continue
using the AI system using two 7-point Likert-scale questions: “I
trust the AI assistant’s recommendations;” and “If I were to do the
task again, I would like to continue working with the AI assistant.”
Agency: After the participant experienced each condition, we asked
them to rate on four questions regarding controllability and agency
adapted from work by Tapal et al. [53].
User Preference & Comments: As we applied within-subjects de-
sign for Initiation and Transparency factors, we were able to gather
more data about participants’ preferences and comments on com-
paring different system-factor combinations. We asked participants
to rank the four interfaces they experienced at the end of the study,
followed by a video interview response about why they ranked the
way they did and what they liked/disliked about each interface.

3.9 Experiment Procedure

We used dscout1 for conducting the study. The study was approved
by an ethics committee. The study was completely remote and unsu-
pervised, and was divided to five phases. (1) We sent out a screening
survey to dscout users and only recruited users who had access to a
Meta Quest 2 VR headset and a 5x5 feet space. We also collected
users’ demographic information, personality traits and trust levels
during the screening phase. We then conducted stratified sampling
on the qualified participants based on their personalities, genders,
ages, trust propensities, and prior trust levels. The procedure was
achieved by the flexible recruiting and multi-phase study design
features on the dscout platform. (2) Qualified participants were in-
structed to install the prototype software on their own Quest devices.
(3) The participants started with a tutorial about the environment,
controls, and tasks. (4) Participants experienced the four interface
conditions one by one. Before the formal testing session of each
interface condition, a training session was provided to participants
in VR to teach them how to use the interface. The usage data were
logged to a server. (5) After they finished the eight trials per con-
dition, they were instructed to take off the VR headset, go to their
computer and complete one page of the questionnaire on dscout.
The questionnaire asked about the levels of agency and trust when
interacting with the AI system. We also asked them to comment on
what they liked and disliked about each condition they experienced.
At the end of the study, participants were asked to rank the four
interface conditions based on their preference. The study took about
80 minutes in total. Participants were compensated with $70 USD.

4 RESULTS

To investigate both main effects and interactions of user and system
factors, since we adopted a mixed-design in this study with repeated
measures, we used generalized linear mixed-model (GLMM) to
process our data in order to take into consideration both fixed and
random effects, followed by sequential Bonferroni-corrected post-
hoc tests for pairwise comparisons. We used a α value of 0.05 for all
significance tests. For interactions between a pair of factors, we plot-
ted the marginal effects of interaction terms. Following suggestions

1https://dscout.com/



Figure 4: A demonstration of the interfaces with different system factors: (a-b) in the user initiated situation, the AI assistance only appear when
users click on the primary trigger button on the controller (i.e., do a fist gesture); (c) the non-transparent interface in which the AI did not display its
confidence value; (d) the transparent interface with good performance, in which the AI displays its confidence value and has a good objective
performance.

in previous work [44], we only interpreted main effects of factors
that were not part of or affected by the presence of interactions.

4.1 Correlation between subjective measures and user
factors

We conducted Pearson’s correlation analysis on the dependent vari-
ables (i.e., Trust, Intent to Use, Agency, Usage Rate, Adoption Rate)
to see how are they correlated with each other. Our results indicate a
positive correlation between Trust and Intent to Use (r = .65, p <
.001), Agency and Intent to Use (r = .30, p< .001) and Intent to Use
and Adoption Rate (r = .13, p = .03). We also observed a positive
correlation between Trust and Agency (r = .30, p < .001), between
Trust and Conscientiousness trait (r = .13, p < .025), and between
Conscientiousness and the intent to use the AI (r = .14, p < .011).
In the user-initiated scenarios, the usage rate of the AI was positively
correlated with the adoption rate of the AI (r = .34, p < .001) and
the intent to use the AI (r = .25, p < .001). No other significant
correlation was identified between a pair of variable.

4.2 AI Usage / Adoption Rate
We collected 80 (number of participants) × 8 (objects) × 2 (Initiation
strategy) × 2 (Transparency) = 2,560 rounds of decision-making
from all participants. Among all the rounds, participants decided
to follow the AI in 1,503 rounds (58.71%). In all the 1,280 system-
initiated rounds, users decided to follow the AI in 1,035 (80.86%)
trials. In all the 1,280 rounds of user-initiated trials, users decided to
use the AI in 526 (41.09%) trials. In the 526 used trials, participants
decided to follow the AI’s suggestion in 468 of the trials (88.97%).

GLMM revealed significant main effect of Initiation strategy on
the adoption rate of AI suggestions (χ2(1,N = 80) = 3.956, p =
.047). We also found borderline interactions between Initia-
tion and AI Performance on the adoption rate (χ2(1,N = 80) =
3.290, p = .070). As shown in Fig. 6 (c), when the performance
level was high, adoption rate was not influenced by initiation strat-
egy. Users opted to adopt the AI’s suggestion most of the time.
However, when the performance level was low, the user-initiated
condition led to a higher adoption rate than the system-initiated
condition.

4.3 Trust and Intent to Use
Our results observed significant main effect of Conscientiousness
(χ2(1,N = 80) = 7.051, p = .007) and Prior Trust (χ2(1,N =
80) = 9.534, p= .002) on the perceived Trust level on the AI system.
We did not observe main effects of other system/user factors on the
user’s perceived Trust with the AI.

We found that Conscientiousness interacted with AI Perfor-
mance on the trust level (χ2(1,N = 80) = 4.714, p = .030). As
shown in Fig. 5 (a), people with a higher level of Conscientiousness
(i.e., from impulsive to prudent) felt a decreased level of trust in the
low-confidence AI condition. In contrast, for users who experienced
the high-confidence AI condition, their trust level did not seem to be
influenced much.

Prior Trust was found to interact with AI Performance on
influencing the user’s trust level and intent to use the AI system
(χ2(1,N = 80) = 7.129, p = .008). Fig. 5 (b) and (c) show the
interaction plots of marginal means. For the medium-performance
condition, Prior Trust positively influenced the level of Trust with
the AI system. However, for good-performance condition, the trust
level was not affected by prior trust level. The trust level was more
likely to be influenced by the performance of the AI system when
the users hold low prior trust with AI systems.

Our results also revealed that Trust Propensity interacted with
Initiation on the trust level (χ2(1,N = 80) = 3.597, p = .030). As
indicated in Fig. 6 (a), users with lower trust propensity is more
sensitive to initiation strategies. For users with high trust propensity,
the difference between trust levels seems to be minimal between the
two initiation strategies.

4.4 Agency

For main effects, GLMM found significant main effect of AI Per-
formance (χ2(1,N = 80) = 53.686, p < .001) on the Agency level.
Post-hoc analysis revealed that users perceived a lower sense of
Agency while interacting with high performance AI as compared to
low performance (p = .012).

The user’s Conscientiousness (χ2(1,N = 80) = 55.257, p <
.001) trait was found to influence the sense of Agency. The user’s
Conscientiousness trait was also found to interact with Initiation
on the perceived agency level (χ2(1,N = 80) = 5.072, p = .024)
(see Fig. 6 (b)). Participants with a higher Conscientiousness traits
experienced a higher level of agency, and the user-initiated condition
also led to a higher agency level than the system-initiated condition.
However, the gap became smaller when the user’s Conscientiousness
level increased.

4.5 User Preferences

Fig. 7 shows the rankings of the four interface conditions for the
medium and good performance levels. Out of the four conditions, the
user-initiated strategy with transparently displayed confidence
was liked the most under both AI performance levels (ranked 1st/2nd
by 31/30 users for medium/good AI performance).

Friedman test revealed a significant main effect of interface
condition on the mean ranking for both accuracy levels (χ2(3) =
79.08, p< .001 for 50% confidence and χ2(3) = 77.92, p< .001 for
75% confidence). For AI with 50% confidence, Bonferroni post-hoc
comparisons showed that user-initiated transparent AI was ranked
significantly higher than the other three conditions (all p < .001).
System-initiated transparent AI was also ranked significantly higher
than both user-initiated and system-initiated non-transparent condi-
tions (p < .001). For AI with 75% confidence, Bonferroni post-hoc
comparisons revealed that user-initiated transparent AI was signif-
icantly more preferred than both system-initiated conditions (both
p < .001). No difference was observed between user-initiated trans-
parent and user-initiated non-transparent conditions (p = .192).



Figure 5: The interaction between AI performance and (a) Conscientiousness, (b,c) Prior Trust on the Trust and Intent to Use levels (areas indicate
95% confidence intervals).

Figure 6: The interaction between Initiation and Trust Propensity, Conscientiousness, and AI Performance on the (a) Trust ; (b) Agency ; and (c)
Adoption Rate levels (areas/bars indicate 95% confidence intervals).

5 DISCUSSION

In our study, both of our hypothesis were supported. In the context
of conducting an AI-assisted spatial task in HWDs, we not only
identified factors that significantly impacted the adoption rate, trust
or agency with AI systems, but also revealed the interactions between
user-related factors and system-related factors.

First, our results showed that understanding users’ traits, such as
Conscientiousness level and Prior Trust in AI, will be critical when
designing or evaluating HAI experiences, because:

(1) Conscientiousness and Prior Trust in AI significantly affected
user’s trust in using a new HAI system; and Conscientiousness had
a significantly effect on the sense of agency. Therefore, when eval-
uating user’s trust towards HAI systems, we need to measure and
balance these two traits for different user groups to avoid confound-
ing factors, since they could potentially affect the result significantly.

(2) Conscientiousness and Prior Trust in AI interact with the
AI’s performance level. If people have lower prior trust in AI or
higher level of conscientiousness, their trust toward AI is more
affected by the AI’s performance (i.e. confidence). Previous research
suggests that people with a higher conscientiousness level have
higher trust in automated systems when conducting decision-making
tasks [8]. In contrast, our study proved that this may not hold when
the AI performance is not ideal. The reason could be that highly-
conscientious users tend to be more responsible and strive to achieve
better performance on their tasks [25], and they may get frustrated
more with a lower-performance AI.

Secondly, our data shows that the Initiation Strategy (whether it is
the user or the system that initiated the AI suggestions) is important
for the following reasons:

(1) Users may not always initiate the AI suggestions, but when
they do, they tend to adopt the suggestion more. In contrast, we
surprisingly did not find AI performance having a significant main
effect on the adoption rate.

(2) Initiation Strategy interacted with multiple other factors, in-
cluding AI Performance Level and Trust Propensity. When the AI’s
performance level is lower, user-initiated suggestions had higher
adoption rates than system-initiated suggestions. Users with lower
trust propensity tended to trust the suggestions less when they were
initiated by the system.

(3) When AI performance is high, users tend to prefer the user-
initiated strategy. This could be explained by some of the users’
comments about losing their sense of making a difference when
the AI performs well and always pops up. As put by one of the
participants, “I felt like I didn’t really do anything. I was kind of just
going along with whatever the AI suggested.” This also aligns well
with our finding that participants experienced a significantly lower
sense of agency when the AI performance was high. Interestingly,
the user group who experienced lower AI performance did not share
a similar kind of frustration.

(4) We observed a somewhat low AI usage rate during user-
initiated conditions (41.09%). From the participants’ comments,
the main reason could be that participants gained more task-related
knowledge as they went through the tasks, which led to their in-



Figure 7: Ranking of the four interface conditions for (a) medium AI performance (50%); and (b) good AI performance (75%).

creased certainty and preference in making decisions by themselves
rather than always relying on the AI suggestions. This result res-
onates with recent work in recommendation systems, which showed
that users with high domain knowledge preferred to explore by
themselves in AI-mediated context exploration scenarios [8].

Thirdly, although we did not find significant main or interaction
effects regarding transparency, we observed that users preferred
transparent, user-initiated conditions the most despite the AI perfor-
mance being higher or lower. We believe that transparency is still an
important factor, especially when combined with other factors such
as initiation. Previous research has found that displaying the confi-
dence level impacted user behaviors of using the AI system [3, 52].
Future research is needed to understand how transparency may im-
pact the HAI experience with the variance of other factors.

6 DESIGN RECOMMENDATIONS

Overall, our results suggest that instead of an one-size-fits-all ap-
proach, Human-AI systems in future HWD applications need to
adapt to different user traits:

• Intelligent systems in HWDs need to have a higher perfor-
mance threshold while providing suggestions to users with
high Conscientiousness or low Prior Trust levels. Wrong or
unfit suggestions may easily lead to lower trust for these users.

• We recommend HAI systems to give users control of whether
and when to initiate the inquiry to AI for many reasons. It can
increase users’ agency especially when the AI performance
is high or user Conscientiousness is low (e.g. more impul-
sive/disorganized). It can also increase the user’s trust level
compared to system initiated suggestions, when users tend to
trust others less, or when the AI performance is lower. The
caveat is that it costs an additional step for users to trigger the
AI suggestion.

• When a system has no idea about user’s traits like Conscien-
tiousness or Prior trust in AI, we recommend having users
initiate the AI suggestions and be transparent about the AI’s
performance, despite what the performance level is.

7 LIMITATIONS & FUTURE WORK

We identify some limitations to our work. First, we utilized telepor-
tation as a fixed cost for better experimental control. This design
choice makes the simulation less real-life like. Second, we studied
performance level as a fixed value during participants’ interactions
with the AI. While we took this approach to simplify the experimen-
tal protocol which allowed us to answer our research questions more
easily, we recognize that this presents some issues with generaliz-
ability. In real-world human-AI interactions, the AI’s performance

level will fluctuate depending on the scenario and task environment.
Or, if the AI takes user-in-the-loop data as continuous input over-
time, its performance could increase as the model is trained and
customized with more data. Future studies could look into how dif-
ferent fluctuation patterns of AI performance levels could influence
HAI experiences. Third, our study simulated short interactions with
an AI in limited rounds of decision making. Future studies could
look into longitudinal interactions in HWD-empowered decision-
making scenarios, and how to build trust and partnership with users
of different characteristics in the long run. Fourth, our participants
had a slightly skewed distribution on the user factors. This could
be attributed to the population distribution of the crowd-sourcing
platform that we recruited participants from. Future studies could in-
vestigate a larger sample of participants with more even distribution
on the user factors. Fifth, our scenario simulates a common every-
day decision-making scenario powered by HWD/AR/MR devices,
in which users have domain knowledge and gain knowledge along
the way. Future studies could explore scenarios when the user’s
and AI’s knowledge on the subject are at various levels. Last, the
tasks simulated in our study is futuristic and may be challenging
to implement in current HWDs. Future research could investigate
applications scenarios that are more practical in current settings.

8 CONCLUSION

Our research was motivated to enhance the human-AI experience
when users receive contextualized everyday-task suggestions in spa-
tial tasks wearing head-worn displays. This work identified the
user and system factors that impact how users trust, adopt, and feel
agency with these suggestions, and how these factors interplay with
each other. We not only found the individual factors that made a
significant difference, such as AI Performance, Initiation, user’s
Conscientiousness and Prior Trust in AI, but also identified several
significant interactions between factors, such as the interplay be-
tween the user’s Conscientiousness and Prior Trust in AI with AI
Performance; and the Initiation Strategy with AI performance and
Trust Propensity. Our findings fill the gap of the prior research in
which the factors were mostly studied separately and not in spatial
wearable computing scenarios. Based on the findings, we provide
concrete design recommendations about how to adapt the system de-
sign with different users’ traits for tailored and favorable human-AI
experiences in spatial head-worn display experiences.
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