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Figure 1: The proposed replacement for the ISO 9241-411 standard selection task. The starting object is represented by the blue
sphere and the target is represented by the yellow sphere. The left portion of the figure shows the task from the participant’s point of
view. The right portion shows how the task looks from a third-person point of view. The black dot represents the location of the
participant and the red arrow indicates the direction they were facing.

ABSTRACT

Performance models of interaction, such as Fitts’ law, are important
tools for predicting and explaining human motor performance and
for designing high-performance user interfaces. Extensive prior
work has proposed such models for the 3D interaction task of distal
pointing, in which the user points their hand or a device at a distant
target in order to select it. However, there is no consensus on how to
compute the index of difficulty for distal pointing tasks. We present
a preliminary study suggesting that existing models may not be
sufficient to model distal pointing performance with current virtual
reality technologies. Based on these results, we hypothesized that
both the form of the model and the standard method for collecting
empirical data for pointing tasks might need to change in order to
achieve a more accurate and valid distal pointing model. In our
main study, we used a new methodology to collect distal pointing
data and evaluated traditional models, purely ballistic models, and
two-part models. Ultimately, we found that the best model used a
simple Fitts’-law-style index of difficulty with angular measures of
amplitude and width.
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1 INTRODUCTION

Distal pointing, in which the user points their hand or a device at a
distant target in order to select it, is a key component of interactions
in 3D user interfaces. Ray casting, an interaction technique based
on distal pointing, is often used as a standard selection technique
in today’s 3D user interfaces, such as Meta’s Quest Virtual Reality
(VR) platform and the Magic Leap Augmented Reality (AR) Head
Worn Display (HWD). Distal pointing allows users of these 3D
interfaces to interact with elements of the interface from a distance.

It is beneficial to UX practitioners to be able to accurately predict
the time that it will take to complete distal pointing selection tasks
and other common interactions when interacting with a 3D interface.
An accurate performance model would allow researchers to better
understand user behavior and as a result create more efficient user
interfaces. It also has the added benefit of accurately predicting
untested difficulty values. Fitts’ law [11] is the basis for many
predictive models that allow UX practitioners to predict the time it
will take a user to complete a given interaction in a user interface.
Fitts’ law and similar models accomplish this by predicting selection
time as as a function of an “index of difficulty” (ID), which in
turn is a function of the target size (W) and movement amplitude
(A) [1,23,39,45].

Fitts’ law was originally created to model the performance of
one-dimensional (1D) tapping tasks [11]. However, Fitts’ law has
been shown to also work well with two-dimensional (2D) selection
tasks [29, 31, 35,36]. There is clear interest in extending Fitts’
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law to three-dimensional (3D) selection tasks. Several attempts
have been made to extend Fitts’ law to work for 3D distal pointing
[2]. Researchers such as Murata and Iwase [37], and Kopper et
al. [26] have attempted to extend Fitts’ Law, sometimes adding
parameters such as movement direction or distance to the surface on
which targets lie, or replacing linear measures of size and amplitude
with angular measurements, to account for differences between
distal pointing and traditional 2D pointing tasks. However, it is
unclear which form of model works best when modeling selection
performance in a 3D user interface. Existing performance models
were generated based on studies with older technology that are
outdated or non-standard by the standards of today’s modern VR
and AR equipment. There has been little work conducted regarding
modeling selection performance using modern HWDs. For example,
the experiment of Kopper et al. utilized large displays to show small
targets to the participants [26]. It is unclear whether these results
generalize to HWDs.

Existing models are also not as elegant as the standard Fitts’
law model. Models that have attempted to predict user selection
performance in 3D user interfaces have often had to resort to some
unconventional methods in order to produce a model that fits their
data correctly. For example, the best performing model from Kopper
et al.’s work [26] needed to cube the target size value and square
the entire index of difficulty in order to produce a satisfactory fit,
without clear justification for doing so. Thus, we suggest that it is
time to revisit distal pointing models for VR.

Modeling Fitts’-style pointing tasks is so fundamental that a
standard task methodology (ISO-9241-411) has been defined for
this purpose. The standard task arranges circular targets in a circular
layout and has users select all the items in a reciprocal fashion (i.e.,
always moving from a target on one side of the circle to one on the
other side). However, the standard task is not without its limitations,
such as a limited range of possible ID values (especially easy ones)
and trial interdependence. Due to these limitations, rethinking the
existing methods for collecting aimed movement data may also be
useful in improving distal pointing models.

Our work seeks to answer the following research questions.

* RQ1: Is there a simple and elegant model that can accu-
rately predict distal pointing performance across a wide
range of realistic task difficulties?

* RQ2: How does user selection behavior change based on
task difficulty, and how can that inform the design of a
predictive model?

To address these questions, we conducted a preliminary study
in which we compared the predictions of existing models to actual
task performance in VR using the ISO 9241-411 standard selection
task. This analysis suggested that selection tasks with a very low
index of difficulty are not modeled well by existing models. Because
of this, we hypothesized that it might be necessary to create a new
two-part model that separately models easy and regular difficulty
distal pointing tasks.

After developing a new task and evaluation methodology, we
conducted a second user study to generate more data to test the
idea of a two-part model alongside other model formats. Ultimately,
we found that a simple model using angular measures of size and
amplitude modeled the data best. Our data also allowed us to do a
deeper analysis of user selection behavior for distal pointing tasks
with a wide range of difficulties.

The contributions of our work are as follows:

* An evaluation of different models for distal pointing in the
literature

* Discussion and assessment of the idea that very easy distal
pointing tasks might need to be modeled separately

* A novel, generic distal pointing assessment methodology that
provides data on distal pointing tasks for a wide range of
difficulties without interdependence between trials

* An elegant predictive model for distal pointing tasks that accu-
rately models performance across a wide range of difficulties

2 RELATED WORK

In 1954, Paul Fitts proposed a model for modeling the time it takes
a user to move reciprocally between physical plates [11]. Fitts
found that we could accurately model the time it takes an individual
to move between targets of different sizes and distances from one
another using a reciprocal selection pattern when moving between
targets. Fitts’ law is defined as:

2A
MT =a+b-ID, where IDzlogz(W) (D

where A is the amplitude or distance of the target from the starting
point, W is the width of the target, and a and b are both determined
via linear regression. The original model provided by Fitts has been
reinterpreted by multiple researchers [8, 37,41, 48]; specifically,
others have reinterpreted the formula for ID. One interpretation by
MacKenzie, also known as the Shannon formulation, has served as
the standard for future distal pointing research [31]. MacKenzie’s
reinterpretation of Fitts’ law is:

A
MT =a+b-1ID, where ID:logz(W—i—l) 2)

This model has been used to model performance in the context of
2D user interfaces for many decades [1,23,39,45]. Many attempts
have been made to extend this model to 3D user interfaces with
varying degrees of success. This model will serve as the base for
the various models used throughout this paper. Specifically, we will
alter how we calculate ID.

The challenges of extending this model to work in 3D user in-
terfaces are numerous as noted by Triantafyllidis and Li [46]. The
following sections will describe previous work in modeling the per-
formance of 3D interactions, modeling distal pointing performance,
and experimental tasks for evaluating distal pointing.

2.1 Modeling 3D Interactions

Goals, Operators, Methods, and Selection (GOMS) and Keystroke-
Level Models (KLM) are predictive models that allow designers to
predict the amount of time it would take a user to complete a given
interaction. GOMS accomplishes this by defining: Goals that a user
would want to accomplish when using software, Operators which
are actions that a user can perform within software, Methods which
are combinations of subgoals and operators that a user can perform
within the application, and selection rules which are determined by
the individual user to decide which methods and operators to use to
accomplish a goal [20,22]. Several of these predictive models have
been created for 2D interfaces [20-22, 24]. In modeling the perfor-
mance of 3D interactions, researchers strive to create a GOMS/KLM
style predictive model that would allow designers to predict the time
that it would take a user to complete a given 3D interaction.

There has been some early work conducted in progressing towards
a predictive model for 3D interactions. Namely works by Cabric et al,
Ghasemi et al., and Zhou et al. began exploring the idea of extending
existing GOMS and KLM style models to support interactions in AR
and VR [7, 14,52]. However, the individual interactions must first
be understood and predictable on their own. There has been much
work conducted in an effort to achieve this goal. Specifically, many
researchers have attempted to extend Fitts’ law to work with other
3D interactions besides distal pointing. Zhao et al. and Grossman
and Balakrishnan both conducted studies that attempted to extend
Fitts’ law to direct touch interactions [8,15,51].
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In summary, there is still a significant amount of work required
in modeling individual interactions before we can develop an all-
encompassing, GOMS/KLM style predictive model for 3D interac-
tions. The rest of this paper will focus exclusively on one component
of these future GOMS/KLM models, modeling distal pointing per-
formance.

2.2 Modeling Distal Pointing

Several researchers have attempted to extend Fitts’ law to account
for distal selection tasks in a 3D interface. Murata and Iwase were
among the first to apply Fitts’ original model to 3D distal pointing
tasks [37]. They found that while Fitts’ law worked well for 1D
and 2D tasks (as proven by Mackenzie and Buxton [31] and Murata
[35] [36]) the conventional Fitts’ model, modified by Mackenzie in
1989 [28], did not fit the data nearly as well for 3D distal pointing
tasks. As a result, they proposed a new model that took into account
the direction a user had to move in order to hit the target by including
theta (the direction) into the formula for ID.

In the time since these early works were published, multiple
researchers have attempted to use and extend these early models to
model 3D distal pointing performance to varying degrees of success.
Some researchers have looked at the inclination of the user interface
to see if that would provide a greater data to model fit [9]. There
have also been attempts to add target depth to existing models to see
how that affected model fit [3,26,44,47]. Specifically, Teather and
Stuerzlinger found that modeling 3D interactions (both direct touch
and distal pointing) using Fitts’ law would require a change in the
formulation of the 2D Fitts’ law model as it did not perform well in
modeling 3D selection tasks that were not presented at or parallel to
the screen [43].

Researchers have also attempted to extend Fitts’ law by account-
ing for the angular distance that a user has to move between a starting
point and the target (¢) and the angular width of the target (@). Us-
ing angular measurements in Fitts’ law calculations rather than linear
measurements makes sense because most of the movements involved
in distal pointing tasks are rotations of the elbow or wrist rather than
hand translations. Kopper et al. wrote two papers that dealt with
performance modeling in 3D distal pointing and selection tasks. The
first of these papers provided a new IDang model for modeling
performance in distal pointing tasks. [25,26].

o
IDANG = 10g2 (6 + 1)

in which « is the angular distance between the center of the
starting object to the center of the target, from the user’s perspective,
and o is angular size of the target from the user’s perspective.

The authors concluded that this model fit their experimental data
mostly well, but they noticed an exponential outlier trend occurring
within the model. To remedy this, they further modified their pro-
posed model by providing an exponent (K) to the w value in the
updated /Dpp model and squaring the logarithm result.

o 2
IDpp = [logz (J + 1>}

Through regression analysis, the researchers determined the opti-
mal fit for the model occurred when k = 3. By providing @ with a
cube exponent, they were able to fit their data to the model better.
We utilize the IDaNG and IDpp models in our paper as comparison
models for our own data. We use the /D NG model as it is essentially
an angular version of the Shannon formulation of Fitts’ law [31].
The IDpp model is included here as it was used in Kopper et al.’s
previous work and found to fit their data well [26]. Similarly, we
included an ID ;53 model that took the angular Fitts’ law formula-
tion from Kopper et al.’s work and cubed ®, following the results
from that work that found their data fit best when k (the exponent on
o) equaled 3 [26]. The ID 3 model is defined below:

o
ID \ng» = log2 <E + 1)

Throughout the past few decades, there have been many studies of
various distal pointing models. The only clear consensus within the
community is that Fitts’ law should be applicable to 3D movement in
the same way that it has worked for 1D and 2D movement. However,
there still has not been a model that has been agreed upon by the
community at large as being reliable while being simple, elegant,
and explainable. Works by Holmes et al., Zeng et al., and Burno
et al. seem to suggest that existing Fitts’ law performance models
could still model 2D targets in 3D space well, however, there still
is not an agreed upon model for 3D distal pointing selections in the
same manner as 1D and 2D selections [2,6, 17,50].

Quite a few of the aforementioned works provide a modified
version of Fitts’ law that has some additional element added that
allowed their data to fit better when conducting a linear regression.
However, adding additional terms to a linear regression will always
increase the R? of predictive models, which can be misleading [38].
Finding a model that fits distal selection data well while also being
intuitive and explainable is still an open question. The goal of this
paper is to revisit some of the popular Fitts-style models, determine
if they do model distal pointing tasks well, and if not, analyze what
can be done to improve the overall fit and performance modeling.

2.3 Methods For Collecting Aimed Movement Data

Dating back to the original tapping experiment conducted by Fitts in
1954, there have been many methods for collecting aimed movement
data. Fitts created the first of these tasks which had participants tap
back and forth between two targets with varying distances and target
widths [11]. This task would go on to serve as inspiration for future
iterations of methods for collecting aimed movement data. One of
these iterations was created by Mackenzie et al. where they had
participants click targets with differing amplitudes and widths using
either a mouse, stylus, or trackball [30].

In 1999, the ISO 9241-9:2000 standard was created as a stan-
dardization of requirements for non-keyboard input devices [18].
This standard featured guidelines for measuring the performance of
non-keyboard input devices. Douglas et al. conducted one of the
first experiments that utilized the performance measure guidelines
from the ISO 9241 standard and had their participants complete a
very early version of the ISO standard task that is seen in distal
pointing studies frequently today [10]. From there, the standard was
improved and iterated on until it became the gold standard for data
collection in distal pointing and Fitts’ law works.

However, the ISO standard task is not without its flaws. In section
4, we discuss the limitations of the methodology with respect to
trial interdependence and inability to easily test very easy distal
pointing tasks; we propose a new methodology to address these
shortcomings.

3 PRELIMINARY EXPERIMENT
3.1 Goals

This preliminary experiment was conducted in order to test past
3D distal pointing models using modern HWDs that feature higher
fidelity displays and tracking systems compared to the systems
used in prior distal pointing work. In addition, because our prior
experience led us to believe that the /Dpp model [26] had poor
performance on very easy distal pointing tasks, such as those found
in many AR/VR menu interfaces, we wanted to gather data on such
tasks. To accomplish this, the selection task utilized in the study
recreated the ISO 9241-411 standard selection task as shown in
Figure 2. By utilizing the ISO standard selection task, the results
from our study can be compared to other previous distal pointing
work that also utilizes the ISO standard selection task.
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Figure 2: The selection task used in the preliminary study.

3.2 Experimental Design

This within-subjects study had two independent variables: ¢ (20, 40,
60 degrees) and o (1, 2, 3, 5, 10, 15 degrees). Time (in seconds) was
the only dependent variable in the preliminary study. In total, there
were 18 possible combinations of the two independent variables. It
should be noted that the easiest combination of o and @ (o = 20
and @ = 15) would provide an ID of 0.00007 using Kopper et al.’s
formulation for ID, which is significantly lower than the ID values
tested in their previous work [26].

3.3 Apparatus

Participants used a Meta Quest 2 HWD, and one of two Meta Touch
Controllers (participants only used the respective controller for their
dominant hand.) The headset has an 1832 x 1920 resolution per eye
with a refresh rate of up to 90 Hz.! In addition, we also used a PC
running Windows 10 with an i9-12900K processor, RTX 3070 Ti
graphics card, and 32GB of DDRS5 RAM to run the VR experience
through the Unity 2020.3.17f1 editor.

3.4 Task

Participants were tasked with selecting 10 spherical targets that
were arranged in a circular pattern according to the ISO 9241-411
standard selection task. The targets were placed 2 meters from the
participants. The participant’s controller had a white ray extending
from it that they would use to select each of the targets by intersecting
the ray with one of the targets. Once participants pointed the ray
at a target, it was highlighted with a yellow circle indicating the
ability to select the target by pulling the trigger on the controller.
Participants would select the initial target highlighted in red and
then select the red target opposite to the previously selected one
until all targets were selected. The direction of the next target
was always shown to the participant by way of a white arrow that
pointed in the direction of the next target after the previous target
was selected. Participants completed 54 sets of trials throughout the
study with each set having 10 individual trials. In this case, a trial is
the selection of an individual target in the circular arrangement of
10 targets. Each trial within a set featured 10 targets with the same
a and @ values. Between sets, o and @ varied with participants
seeing each of the 18 unique combinations of ¢ and @ 3 times. In
total, 7560 trial data points were collected across 14 study sessions.

3.5 Procedure

The study was approved by our local ethics board. Upon arriving to
the testing area, participants were welcomed into our lab. Prior to
the study, participants were emailed a copy of the consent document

Uhttps://www.meta.com/quest/products/quest-2/tech-specs/

and asked to review it prior to participating in the study. Partici-
pants were then asked to sign the consent form acknowledging their
participation in our study.

Participants then completed the pre-study questionnaire where
they provided their gender, occupation, age, and dominant hand.
Participants also self-reported their fatigue level as well as their
experience with VR on a Likert scale ranging from 1 to 5.

Participants were then shown a brief presentation with a video
that demonstrated to participants how to perform the selection task.
Participants were then introduced to the Meta Quest 2 and the Meta
Touch Controller that they would be using to complete the study.
Participants were shown how to adjust the strap on the HWD so that
it would fit comfortably on their head. Participants were also shown
the trigger on the back of the touch controller which is how they
would select the targets. Prior to the study beginning, participants
completed three sets of practice trials. Participants completed a
set of trials with a random easy ID, a random medium ID, and a
random hard ID. After completing these practice trials successfully,
participants were free to begin the study when they felt comfortable
to do so. Participants then completed the 54 sets of trials in a
completely random order that was generated by the Unity editor
on launch. Any failed trials by the participants were given to the
participants again at the end of the study. There were no additional
questionnaires or interviews conducted at the conclusion of the
study.

3.6 Participants

We recruited 14 participants (11 Male, 3 Female) from various
Human-Computer Interaction and computer science email lists.
12 of our participants self-reported as being predominantly right-
handed, 1 participant self-reported as being predominantly left
handed, and 1 participant self-reported as being ambidextrous. The
ambidextrous participant was free to choose the hand they preferred,
however, they were asked to be consistent with the hand they chose.
Participants had an average age of 24.28 years old, with our youngest
participant being 19 years old and our oldest participant being 38
years old.

3.7 Results

Throughout both the preliminary study and main study, the fit of
data for a particular model was determined by calculating the grand
average time it took all participants to complete a trial with a certain
combination of alpha and omega values, and then performing a linear
regression on the 18 resulting averages. From there, the coefficient
of determination (R?) value was used to determine how well the data
fit a particular model.

We used data gleaned from our preliminary study and attempted
to fit the data to existing distal pointing models. We began by
attempting to fit our data to the preferred /Dpp model by Kopper et
al. [26]. We found that our data was modeled fairly well with R?
=84.79. However, we noticed an interesting pattern when looking
at the linear regression plot, shown in figure 3. It appeared that the
distal pointing tasks with low ID values at the left of the plot were
not modeled particularly well at all. We hypothesized that selection
tasks with a low ID value should be modeled separately from those
tasks with a higher ID value, as we believed that participants could
have been completing tasks with low ID values in a purely ballistic
manner. The idea of such a two-part model is not unprecedented,
with Shoemaker et al. initially proposing a similar approach as a
replacement for Fitts’ law in modeling user selection performance on
2D displays where they found that two-part models more accurately
modeled distal pointing performance when compared to one-part
models. [41]. Two-part models have been tested in other works and
have been shown to increase model fit when compared to one-part
models [19,42]. Similarly, Gan & Hoffman found that Fitts’ law
could be less accurate when describing movements with ID smaller
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L-R BreakPoint Model-L Model-R
R? Intercept Slope R? Intercept Slope
3-15 0.0006 93.65 % 0.3791 277.1991 83.05% 0.7019 0.0275
4-14 0.0008 15.24% 0.4216 83.6293 86.26% 0.7314 0.0262
5-13 0.0032 29.02% 0.4443 30.2779 87.86% 0.7546 0.0253
6-12 0.0071 66.05% 0.4466 27.4405 87.99% 0.7703 0.0246
7-11 0.0458 10.06% 0.4950 1.6225 91.56% 0.8049 0.0232
8-10 0.16 45.06% 0.4976 1.2237 92.33% 0.8266 0.0223
9-9 0.32 72.28% 0.5009 1.0416 91.62% 0.8294 0.0222
10-8 0.64 41.99% 0.5268 0.4090 94.99% 0.8736 0.0204
11-7 1.72 57.58% 0.5433 0.2311 94.21% 0.8779 0.0202
12-6 2.85 67.50% 0.5536 0.1694 93.90% 0.8614 0.0208
13-5 3.27 64.50% 0.5619 0.1310 92.73% 0.9075 0.0191
14-4 6.68 60.88% 0.5860 0.0815 89.01% 0.9558 0.0174
15-3 9.53 71.03% 0.5948 0.0690 98.25% 0.7125 0.0255
Table 1: Table that shows attempts made at finding a breakpoint for easy and difficult levels of ID for the IDpp model.
L-R BreakPoint Model-L Model-R
R? Intercept Slope R? Intercept Slope

3-11 1.8745 96.12% 0.1967 0.1495 97.44% -0.2084 0.2966
4-10 2.3219 98.69% 0.1967 0.1495 97.54% -0.2583 0.3073
5-9 2.8074 99.15% 0.1780 0.1611 97.32% -0.2846 0.3127
6-8 2.9386 98.79% 0.1607 0.1716 97.26% -0.3338 0.3226
7-7 3.1699 98.92% 0.1683 0.1673 96.45% -0.3338 0.3226
8-6 3.4594 94.31% 0.1158 0.1953 98.30% -0.4782 0.3503
9-5 3.7004 95.40% 0.1225 0.1919 97.57% -0.4841 0.3514
10-4 3.8413 96.17% 0.1109 0.1975 97.00% -0.6546 0.3830
11-3 4.3923 96.48% 0.0819 0.2104 98.44% -1.0617 0.4561

Table 2: Table that shows attempts made at finding a breakpoint for easy and difficult levels of ID for the IDang model.

than 3 [12]. Schuetz found that when ID is smaller than 1.4, target
selection time using gaze becomes close to a constant value [40]. We
hypothesize that the same could apply to distal pointing scenarios
with HWDs.

We also attempted to fit the data from the preliminary study to
both the IDAnG and ID g3 models. In fitting this data, we found
that the /D NG model modeled the preliminary study data relatively
well producing an R? value of 92.4% (see Fig. 6). However, we
continued to search for an additional solution as the IDanG model
produced a negative intercept of -0.0406, which is undesirable as
it suggests that the easiest distal pointing task would take negative
time, which is, of course, impossible.

The idea of modeling distal pointing tasks with a low ID value
separately was explored further by creating a two-part model in
which we found a “breakpoint” in the ID values where two separate
left and right models could be created for modeling performance in
distal pointing tasks. To do this, the data from the preliminary user
study was used to calculate three different values of ID using the
IDANG ID \ng3» and IDpp models. We then ordered each of the ID
values from least to greatest. We then explored two-part regression
models by breaking the data into two pools at a “breakpoint” (i.e. an
ID breakpoint of 0.16 would mean that the data associated with all

IDs less than 0.16 inclusive would be one data pool while the data
for all other ID values would be in another pool). The leftmost break-
point was the third smallest ID value, while the rightmost breakpoint
was the third largest ID value, in order to have enough data to per-
form the linear regression. Table 1 shows the results of these models
using /Dpp. The L-R column represents the progression through the
distinct ID values, the BreakPoint column is the selected breakpoint
for that particular analysis, and the Model-L and Model-R columns
show the results for the linear regression calculations. As Table 1
shows, the 3-15 and 9-9 splits of the data gave us the best results,
though neither was particularly good at fitting both parts of the data.
Figure 4 shows the linear regression plot for the 9-9 row in Table 1.

Following the same process as above, we further evaluated the
two-part model concept by utilizing the IDaNg formula for ID
calculations. These results are shown in Table 2. We found that the
two-part model with the best fit was for the 5-9 split, where the left
model had an R? value of 99% and the right model had an R? value
of 97%. The plot for this particular model is shown in Figure 5. This
two-part model granted a higher R? value compared to the one-part
model which had an R? value of 96.16%. The plot for the one-part
model is shown in Figure 6.

This finding prompted us to conduct a second, more compre-
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Figure 3: Linear regression plot using the data from the preliminary
study for the IDpp model.
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Figure 4: Linear regression plot that shows the left (blue) and right
(red) regression models for ID = 0.32

hensive study in order to evaluate whether a two-part model would
more accurately model user distal selection performance as well
as further explore if the /D NG model alone would be sufficient to
model user performance. In this second study, a new distal pointing
methodology was utilized that would allow more varied ID values to
be produced so the two-part model could be tested on more unique
and varied data.

4 A NEW DISTAL POINTING METHOD FOR COLLECTING
AIMED MOVEMENT DATA

4.1 Limitations of ISO 9241-411

The ISO 9241-411 standard selection task has been used in a sub-
stantial number of distal pointing research papers over the past few
decades [3,4,10,26,43,44]. Because of the ISO standard selection
task’s overwhelming acceptance in the research community, we used
it in our preliminary study.

After conducting the preliminary experiment, however, some
shortcomings of the ISO standard task became apparent. First, the
layout of the targets in the selection task is very limiting. Because
the targets are arranged in a circular pattern, it is difficult to test
conditions with low o and high ® values, since this results in targets
that significantly overlap one another. This is an issue because
many selections in practical 3D user interfaces have exactly these
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Figure 5: Linear regression plot that shows the left (blue) and right
(red) regression models for ID = 2.807, the best fitting two-part model
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properties—a short distance to move the pointing ray and a large
target (e.g., selections on a floating menu).

Second, the trials in the standard selection task are interdependent,
because the & and @ values cannot be altered once a user begins a
given selection trial. This is an issue because users could develop
muscle memory when repeatedly selecting the targets which would
adversely affect the collected data.

Third, the measured time to complete a trial in the ISO standard
task is not just a function of the current @ and @ values. Since a
trial begins as soon as the previous one ends, the pointing ray may
not be pointing at the starting point (it could be anywhere inside the
previous target), and the user could even still be moving their hand
in the direction of the previous trial, forcing them to slow down,
stop, and start moving in the opposite direction for the new trial.
To obtain a better model of the time taken for a single pointing ray
movement, it is necessary to separate the end of one trial from the
beginning of the previous one and to ensure that the pointing ray’s
initial direction is very close to the starting point for the trial.

Interestingly, we are not the first to call into question the validity
and effectiveness of the ISO standard selection task. Batmaz and
Stuerzlinger also suggested in their work that it could be time to
explore alternate options for a task in distal pointing work due to the
age of the ISO standard selection task which has been used for over
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20 years in distal pointing work [5].

4.2 Updated Distal Pointing Method

In order to remedy the aforementioned issues with ISO 9241-411,
we propose an updated distal pointing methodology that allows for
greater flexibility and accuracy in evaluating user distal selection
performance. Specifically, our new methodology allows us to study
a wide range of combinations of ¢ and ; it allows these values to
be altered for each trial independently, without having to complete
an entire set of trials consisting of targets with the same o and @
values; and it separates the trials temporally so that the end of one
trial is not the start of the next.

This is accomplished through a new layout that features selection
target locations spaced equally apart (10° between each target both
vertically and horizontally) on a hemispherical grid. We use several
visual components to illustrate the current trial (see Figure 1). Users
begin a trial by pointing to a blue starting object with an angular size
of 1° (the small size ensures that the starting location is consistent
for all users). Users are directed to this starting object by a blue ray
that is attached to the starting object and follows the ray emanating
from the user’s controller. The starting object also features a white
arrow that informs the user of the direction that they will need to
go in order to reach the target. Adding the arrow prevents the user
from having to search for the target, which will allow for a more
accurate measure of pure user performance. It is also worth noting
that the starting object and target are always in the participant’s field
of view. The target is yellow in color and features an angular size
of w. Prior to the time for a trial beginning, participants are shown
both the starting object and target which eliminates the need for
searching during the trial. Eliminating the need to search ensures
that the trials are based solely on movement. Once the user has
located the starting object and pointed to it, they click the trigger
to begin the trial, then move as quickly as possible to point to any
location inside the target and click the trigger again to select it and
end the trial. Audio feedback is provided to the user whenever they
successfully select either the starting object or target. The visuals of
the new distal pointing methodology can be seen in Figure 1.

This setup allows us to study o values in a range from 10-70°
and @ values up to 136°. We are limited to these values due to the
field of view (FOV) of the Meta Quest 2 HWD which is estimated
to have a 104° horizontal FOV and a 98° vertical FOV 2. It would
be possible to add more ¢ and @ values as the FOV improves on
future HWDs. It should also be noted that not all combinations of ¢
and @ are possible, because & must be at least @/2 in order to avoid
situations where the starting point is inside the target.

5 EXPERIMENT
5.1 Goals

The main goal of the second study was to generate the necessary
data to test a variety of distal pointing models when ¢ and @ were
not constrained by the ISO 9241-411 pointing task. Based on the
results of the two-part model from the preliminary study (section 3),
we wanted to verify if a two part approach could provide a better fit
than solely using the /D png model when using a wide range of ID
values.

5.2 Experimental Design

Our independent variables were & and @. There were seven possible
values for ¢ ranging from 10-70 degrees in increments of 10 degrees.
There were 17 possible values of w: 2, 8, 16, 24, 32, 40, 48, 56, 64,
72, 80, 88,96, 104, 112, 120, 128, and 136 degrees. There were only
72 possible combinations of & and @ due to the constraints described
at the end of Section 4.2. We intentionally chose combinations of o

Zhttps://risa2000.github.io/hmdgdb/

and @ that would provide low ID values since we were especially
interested in modeling easy distal pointing tasks.

The dependent variable was the time it takes a participant to com-
plete a selection task. Trials were timed from the moment when
the starting object was selected to the moment when the target was
selected. Participants could attempt to select the starting object as
many times as necessary. However, if participants did not success-
fully hit the target, then the trial was discarded and was given to the
participant again at the end of the study.

5.3 Apparatus

The same equipment (i.e. HWD, PC, etc.) used in the preliminary
study was reused for the main study.

5.4 Procedure

Much of the procedure remained the same between the preliminary
and main study. The main procedural differences between the two
were specific to the new distal pointing methodology which featured
a new training session dedicated to the new task. Participants com-
pleted the same questionnaire from the preliminary study and were
introduced to the equipment in the same way.

After all of the setup was completed for the study, participants
then began the training phase of the study. Participants were in-
structed to complete the selection trials as quickly and accurately
as possible. During the training phase of the study, participants
needed to complete at least 10 trials with varying o and @ values
successfully in order to pass and complete the training phase of
the study. After completing training, participants then began their
first session of actual trials. Each session had 48 trials. The entire
study had 15 sessions for a total of 720 trials for each participant.
At the beginning of the study, a random list of pairings of @ and @
were generated for each distinct participant. These pairings were
randomly distributed throughout each of the sessions. Participants re-
moved the headset and took a break in between each of the sessions.
Participants repeated any missed trials at the end of the study.

5.5 Participants

We recruited 22 participants (15 male, 7 female) from various
Human-Computer Interaction and Computer Science email lists.
We excluded data from two of these participants because of unusual
circumstances that could have biased their results. Specifically, one
participant used both hands to maneuver the controller between tar-
gets and the other participant wore an arm sling which adversely
affected their ability to properly select the targets.

This left us with 20 participants total (14 male, 6 female) whose
data we analyzed. All 20 participants self-reported as being predom-
inantly right handed. They had an average age of 22.31, with ages
ranging from 19 to 35. Our participant pool ranked their experience
with VR with an average of 3.05 on a five-point scale. They also
self-reported their fatigue level, which averaged 2.05 on a five-point
scale. Finally, all of our participants self-identified as students.

5.6 Results

In total, 597 of the 14,997 total collected trials were considered to
be error trials which were to be repeated at the end of the study
session. After these failed trials were redone, there were 14,400
valid trials that could used for analysis. In addition, any trial with
a time value that was two standard deviations below or above the
mean was removed prior to analysis. 523 trials were removed in this
way as an outlier. This left 13,868 trials to be used for analysis.

5.6.1 User Selection Behavior

Distal pointing performance depends on how, mechanically, users
manipulate the input device when completing pointing tasks. The
standard explanation of user behavior is that aimed movements
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consist of a high-velocity, less precise ballistic phase, and a low-
speed, more precise correction phase [33,34,49]. Moreover, standard
models assume that users select the center of targets. Based on
intuition and the results of the preliminary study, we theorized that,
for easy distal pointing tasks with large @ values, users may exhibit
purely ballistic behavior, and may select targets close to their near
edge. To examine the evidence for these ideas, we conducted an
analysis on the behavior of participants in the main study.

First, velocity profiles were created for each combination of o
and o in intervals of 10% (i.e. 10% of the trial complete, 20%, etc.).
Each velocity value leading up to and including the velocity at each
10% interval were averaged together. Note that only the velocity
values after the previous interval were included in the averaging
process (i.e. values from the 10% average velocity were not reused
in the 20% average.) Figures 7 and 8 show the velocity profiles
when @ was 2° and 32°, respectively. The plots show that when
the @ value is smaller, participants began the trial and sped up very
quickly and began slowing down much sooner compared to Figure 8.
This behavior is really only present when @ is small (i.e. @ < 24).
Otherwise, participants ramp up to ballistic speed, though it takes
longer to reach the maximum velocity, and maintain most of this
speed through the duration of the trial as shown in Figure 8. It is also
worth noting that in general, larger o values produced larger average
velocity values as the starting object and target were far enough
away from one another that the participant had ample time to build
up speed on their way to the target. However, we also observed that
once ® crossed a threshold (@ > 72) the average velocity values
began to decrease.

To further analyze selection behavior, we explored the distribu-
tion of hitpoints within the targets. A hitpoint is defined as the
intersection of the ray emanating from the participant’s controller
with the target at the time of selection. The 3D hitpoint coordinates
were projected to 2D to enable visual analysis.

To obtain the 2D hitpoints, the starting object was first projected
onto the plane of the target. The target center was then translated to
the origin of the coordinate system. The target, starting object, and
hitpoint were then rotated so that the target and other points were
aligned with the XY plane. Another rotation was then performed so
that the starting point was aligned with the negative x-axis. Doing
this rotation ensured that all trial movements were aligned in the
same direction. Finally, the points were scaled so that the X value
of the hitpoint fell between —1 < X < 1. In this representation, all
trials move from left to right, and all targets have been scaled to have
the same size.

Figure 9 shows a matrix of plots that display the distribution
of hitpoints for the various combinations of & and ® in the study.
The circle in each plot represents the target, and the line at X =0
separates hitpoints on the left (undershoot) from those on the right
(overshoot). Visual analysis of these plots suggests that trials with
smaller @ values have a more even distribution of hitpoints, while
trials with larger @ values result in more undershoot.

A mixed linear model was created to evaluate the effects of o
and @ on the X-component of the hitpoint coordinate using a linear
mixed model in JASP. We found that &, @, and their interaction all
had a statistically significant effect on the X coordinate value (p <
.0001). The average X-coordinate of the hitpoint decreases as both
a and @ increase.)

In summary, when looking at user selection behavior, we saw that
for large  values, users’ speed increased as a trial progressed and
they maintained most of that speed throughout the trial. Furthermore,
we found that as @ increased, hitpoints increasingly got closer to
the edge of the target. These analyses suggest that large targets may
have faster performance than expected by standard models due to
more purely ballistic selection movement and users taking advantage
of large targets to reduce the effective o. These findings reinforced
our intention to explore a two-part model in which the easy trials are
modeled as a function of ¢ only.

5.6.2 Model Fitting

After conducting both the hitpoint and velocity analyses, a new
two-part model was created in which the same methodology from
the preliminary study was followed with the exception of the IDs
used in the split left and right models. The right model still used
the respective ID calculation for whatever ID model was being used
at the time, however, the left model only utilized the ¢ value in its
regression calculations as & has been used in previous literature to
model purely ballistic, easy distal pointing tasks [13, 16,27].

Despite the evidence from user behavior, we found that easier
distal pointing tasks could not be modeled as a linear function of
o alone. The left model (the one solely using o) had very low R?
values (R2 < 15%). We show the most successful two-part model in
Figures 10 and 11. As the plots shows, the right side of the model
(red) that is using the /D AnG model provides an excellent fit for the
data. However, the left model (Alpha only) provides a very poor fit
for the data. The slope for the left model is near 0 which indicates
that it would be a poor predictor of the dependent variable (Time).

After determining that & alone was not a good predictor of easy
distal pointing performance, the performance of the two-part model
when using ID models on both the left and right were tested to see if
the two-part model methodology would model easy distal pointing
tasks better than any one-size-fits-all model.

Two-part models were created for the IDANG, ID png3> and IDpp

formulations. Looking at the R? values, we determined that the
two-part model approach did not provide a good fit when using the
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Figure 10: Linear regression plot for the best fitting two-part model
using the IDang model and Alpha at breakpoint = 0.6293. This plot
shows the left portion of the model (Alpha Only)

ID \Ng3» and IDpp formulations. It was often the case with both of
these models that only the left or right model provided a good fit or
both models provided a mediocre fit for the study data.

The two-part model for /D ang model could provide a high level
of fit (98-99%), but the best fit was when the breakpoint between the
left and right models was at a high ID value, which is incongruent
with our hypothesis that we should model easy distal pointing tasks
separately. In addition, as Figure 12 shows, even in the best case,
the slopes of both the left and right model are very similar to one
another, which suggests that there is little benefit to using a two-part
model approach. This motivated us to look again at simpler one-part
models.

Therefore, we fit the data from the main study to the IDanG,
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Figure 11: Linear regression plot for the best fitting two-part model
using the IDang model and Alpha at breakpoint = 0.6293. This plot
shows the right portion of the model (IDang)

ID yng3» and IDpp models. The models produced R? values of
97.86%, 77.96%, and 73.3% respectively. The linear regression
plots for the IDaNG and IDpp models are shown in Figure 13 and
Figure 14. Looking at Figure 14, it is clear that easy distal pointing
tasks are still not being modeled well by this model. For brevity, the
linear regression plot for /D ANG® Was not included, however, it tells
a very similar story to the /Dpp model and also does not model easy
distal pointing tasks well.

As Figure 13 and the associated R? value shows, the IDANG
model produces an excellent fit for the data from the main study.
The ID Ang model produced the highest fit of the three models from
the Kopper paper [26] and is also the most elegant of the three
previously discussed models as it is essentially an angular version
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of Fitts’ law.

6 DISCUSSION

6.1 RQT1 - Revisiting & Updating Fitts’ Law Performance
Models

Our first research question asked: “Is there a simple and elegant
model that can accurately predict distal pointing performance
across a wide range of realistic task difficulties?”

Preliminary evidence and intuition led us to believe that we might
need to model easy distal pointing tasks separately, perhaps as a
function of & alone. However, we found that the two-part model
was ultimately unnecessary or unreliable. In creating a two-part
model with the IDsng formulation, we found a larger R? value
on both the left and right split regression models at R = 98% and
99% respectively. However, the gains from the two-part model are
ultimately not worth the added complexity due to the similarity of the
slopes on the left and right models. In the end, we found that a one-
part model based on the /Dang formulation produces the highest
R? value at 97.86%. The IDanG model is simple, elegant, and easy
to understand, as it is essentially the Shannon formulation of Fitts’
law with angular measurements instead of linear measurements.

We did not produce similar results to Kopper et al. when utilizing
the /Dpp model which was their most compatible and preferred
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Figure 14: Linear regression plot using the data from the main study
for the IDpp model.

model [26]. It is possible that because of the newly proposed distal
pointing methodology, we were able to generate a greater variety
of ID values which allowed us to better test the distal pointing
models. In addition, it is possible that the older display and tracking
technology used by Kopper et al. could have affected their study
results. Finally, Kopper’s more complicated model may be simply
be a result of overfitting to the data.

6.2 RQ2 - User Selection Behavior’s Effect on Perfor-
mance Modeling

User selection behavior varied greatly depending upon the selected
value for both ¢ and @. We asked: “How does user selection be-
havior change based on task difficulty, and how can that inform
the design of a predictive model?”

Our hitpoint analysis showed that larger w (and to some extent ¢t)
values resulted in a greater proportion of undershoot. Users can take
advantage of large targets to reduce the total angular distance of the
movement. However, given the failure of our two-part ballistic-only
model to predict movement time for easy tasks, it does not appear
that this reduced angular distance actually made selection faster.

This is partially explained by our velocity analysis. We did indeed
find that users slowed their movements less near the end of a trial
with larger ® values. However, we also found that for very large
targets (@ > 72), average overall velocity values decrease. We hy-
pothesize that the larger target sizes size influenced the participant’s
perception of the target and they felt less inclined to quickly select
the target because it was so large.

Overall, the evidence suggests that, while distal pointing behavior
is not consistent across a wide range of IDs, the effects of extreme
o and o values can cancel each other out, leading to the simple
ID AN model being the best predictor of movement time for both
very easy and more difficult distal pointing tasks.

6.3 Evaluation Of Our New Distal Pointing Method

As we have described, there are numerous practical improvements
that our new method provides (i.e., greater range of ID values, lack
of interdependence among trials, temporal separation of trials) More-
over, looking at the data collected using our new method, and com-
paring it to our preliminary data that was collected using the ISO
standard task, reveals an advantage that was not immediately obvious
at first glance.

In the preliminary study, we discovered that the regression for the
ID ang model had a negative intercept of -0.0406 which is undesir-
able as it does not make sense in the context of the distal pointing
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prediction model. However, in the data collected using our new
method, when we use the same /Dang model and run a regression
on that data, we find that it has an intercept of 0.2133. Because
our new method allowed us to test very easy distal selection tasks
(i.e., Those tasks with a very small ID value) and test combinations
of o and w that otherwise would have been impossible with the
ISO standard task, we think that our new method allowed us to
generate a greater variety of data which produced a more realistic
intercept. This further contributes to our goal of finding a simple,
yet explainable performance model.

7 LIMITATIONS & FUTURE WORK

This work is not without its limitations. First, our participant pool
could have been more diverse in many respects. In particular, all of
our participants self-identified as being predominantly right-handed.
While this is not inherently a limitation, since we required partici-
pants to use their dominant hand, further work should be conducted
with left-handed users to ensure similar results are found. Partici-
pants were also fairly young with an average age of 22.31. Further
work could be conducted with an older population of participants to
see how distal pointing behavior changes, if at all.

Future work could also be conducted to see if the direction a par-
ticipant moves to reach the target or the tilt of the controller affects
the accuracy of the predicted movement time. Additionally, we plan
to validate both the /Dy model as well as the newly proposed
distal pointing method in a future work. Additionally, because the
new distal pointing task featured independent trials, effective width
and throughput were not used in this work as they typically show
the variance in user selection behavior through multiple, sequential
trials with the same o and w values [32]. Future work should ex-
plore whether effective width and throughput are still valid metrics
when used with the new distal pointing task. Finally, we have only
collected data from a single apparatus. We believe that the model
should be generally applicable to a variety of head-worn displays
and spatial input devices, only requiring changes to the model’s
coefficients to accurately predict distal pointing time with different
hardware. However, we have yet to validate this claim.

8 CONCLUSION

In this paper, we revisited and updated distal selection performance
models. We began by conducting a preliminary study that used the
current ISO standard task. Using the data from that study, we found
that distal pointing tasks with a low ID level were not modeled well.
This led us to exploring the idea of a two-part model that modeled
easy and regular distal pointing tasks separately. We conducted a
second study with a new distal pointing methodology that allowed
us to test a greater range of ID values. We found that ultimately,
the two-part model was unnecessary and that the /Dang model,
essentially an angular version of Fitts’ law, provided the greatest
overall fit for both the ISO standard task and our new distal pointing
task.
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